|
|
@ -1,6 +1,6 @@ |
|
|
|
from math import exp, log |
|
|
|
from math import log |
|
|
|
from random import random |
|
|
|
from typing import List, Tuple |
|
|
|
from typing import List, Optional, Tuple |
|
|
|
|
|
|
|
from gbso.program.test_case import Output, TestCase, eq_on_testcase |
|
|
|
from gbso.program.mutate import mutate_program |
|
|
@ -31,11 +31,12 @@ def cost(orig_prgm, test_cases, outputs, prgm) -> Tuple[int, bool]: |
|
|
|
|
|
|
|
|
|
|
|
def optimize( |
|
|
|
prgm: Program, |
|
|
|
target_prgm: Program, |
|
|
|
max_size: int, |
|
|
|
test_cases: List[TestCase], |
|
|
|
outputs: List[Output], |
|
|
|
beta: int = 0.5, # How far away in cost you are allowed to search |
|
|
|
init_prgm: Optional[Program] = None, |
|
|
|
num_iters: int = DEFAULT_NUM_ITERS, |
|
|
|
prob_opcode: float = DEFAULT_PROB_OPCODE, |
|
|
|
prob_operand: float = DEFAULT_PROB_OPERAND, |
|
|
@ -43,31 +44,32 @@ def optimize( |
|
|
|
prob_insn: float = DEFAULT_PROB_INSN, |
|
|
|
prob_insn_unused: float = DEFAULT_PROB_INSN_UNUSED, |
|
|
|
) -> Program: |
|
|
|
padded_prgm = prgm.pad(max_size) |
|
|
|
padded_prgm = (init_prgm or target_prgm).pad(max_size) |
|
|
|
|
|
|
|
last_prgm = padded_prgm |
|
|
|
last_cost, _last_eq = cost(padded_prgm, test_cases, outputs, last_prgm) |
|
|
|
last_cost, _last_eq = cost(target_prgm, test_cases, outputs, last_prgm) |
|
|
|
|
|
|
|
best_prgm = padded_prgm |
|
|
|
best_cost = last_cost |
|
|
|
best_prgm = target_prgm.pad(max_size) |
|
|
|
best_cost = 0 |
|
|
|
|
|
|
|
num_candidates = 0 |
|
|
|
|
|
|
|
for _ in range(num_iters): |
|
|
|
candidate_prgm = mutate_program( |
|
|
|
last_prgm, prob_opcode, prob_operand, prob_swap, prob_insn, prob_insn_unused |
|
|
|
) |
|
|
|
candidate_cost, candidate_eq = cost( |
|
|
|
padded_prgm, test_cases, outputs, candidate_prgm |
|
|
|
target_prgm, test_cases, outputs, candidate_prgm |
|
|
|
) |
|
|
|
|
|
|
|
if candidate_cost < best_cost and candidate_eq: |
|
|
|
best_prgm = candidate_prgm |
|
|
|
best_cost = candidate_cost |
|
|
|
num_candidates += 1 |
|
|
|
|
|
|
|
if candidate_cost < last_cost - log(random()) / beta: |
|
|
|
last_prgm = candidate_prgm |
|
|
|
last_cost = candidate_cost |
|
|
|
|
|
|
|
print("last") |
|
|
|
last_prgm.display() |
|
|
|
|
|
|
|
print(f"Optimization complete. Total candidates: {num_candidates}") |
|
|
|
return best_prgm |