Browse Source

Allow searching from a random starting point

master
Forest Belton 3 years ago
parent
commit
e34eb15271
3 changed files with 28 additions and 12 deletions
  1. +5
    -1
      ex.py
  2. +13
    -11
      gbso/optimize.py
  3. +10
    -0
      gbso/program/mutate.py

+ 5
- 1
ex.py View File

@ -1,3 +1,4 @@
from gbso.program.mutate import create_random_program
from time import time
from gbso.cpu.state import CPUState
@ -20,11 +21,12 @@ prgm = Program(
outputs = [R8.A]
test_cases = [TestCase()]
max_size = 4
num_iters = 100_000_000
num_iters = 1_000_000
initial_cost = cost(prgm, test_cases, outputs, prgm)
initial_cycles = prgm.perf()
print("Program to optimize:")
prgm.display()
print(f"Cost: {initial_cost}")
@ -34,6 +36,7 @@ start_time = time()
optimized_prgm = optimize(
prgm,
init_prgm=create_random_program(max_size),
max_size=max_size,
test_cases=test_cases,
outputs=outputs,
@ -42,6 +45,7 @@ optimized_prgm = optimize(
end_time = time()
print("Optimized result:")
optimized_prgm.display()
optimized_cost = cost(prgm, test_cases, outputs, optimized_prgm)

+ 13
- 11
gbso/optimize.py View File

@ -1,6 +1,6 @@
from math import exp, log
from math import log
from random import random
from typing import List, Tuple
from typing import List, Optional, Tuple
from gbso.program.test_case import Output, TestCase, eq_on_testcase
from gbso.program.mutate import mutate_program
@ -31,11 +31,12 @@ def cost(orig_prgm, test_cases, outputs, prgm) -> Tuple[int, bool]:
def optimize(
prgm: Program,
target_prgm: Program,
max_size: int,
test_cases: List[TestCase],
outputs: List[Output],
beta: int = 0.5, # How far away in cost you are allowed to search
init_prgm: Optional[Program] = None,
num_iters: int = DEFAULT_NUM_ITERS,
prob_opcode: float = DEFAULT_PROB_OPCODE,
prob_operand: float = DEFAULT_PROB_OPERAND,
@ -43,31 +44,32 @@ def optimize(
prob_insn: float = DEFAULT_PROB_INSN,
prob_insn_unused: float = DEFAULT_PROB_INSN_UNUSED,
) -> Program:
padded_prgm = prgm.pad(max_size)
padded_prgm = (init_prgm or target_prgm).pad(max_size)
last_prgm = padded_prgm
last_cost, _last_eq = cost(padded_prgm, test_cases, outputs, last_prgm)
last_cost, _last_eq = cost(target_prgm, test_cases, outputs, last_prgm)
best_prgm = padded_prgm
best_cost = last_cost
best_prgm = target_prgm.pad(max_size)
best_cost = 0
num_candidates = 0
for _ in range(num_iters):
candidate_prgm = mutate_program(
last_prgm, prob_opcode, prob_operand, prob_swap, prob_insn, prob_insn_unused
)
candidate_cost, candidate_eq = cost(
padded_prgm, test_cases, outputs, candidate_prgm
target_prgm, test_cases, outputs, candidate_prgm
)
if candidate_cost < best_cost and candidate_eq:
best_prgm = candidate_prgm
best_cost = candidate_cost
num_candidates += 1
if candidate_cost < last_cost - log(random()) / beta:
last_prgm = candidate_prgm
last_cost = candidate_cost
print("last")
last_prgm.display()
print(f"Optimization complete. Total candidates: {num_candidates}")
return best_prgm

+ 10
- 0
gbso/program/mutate.py View File

@ -146,3 +146,13 @@ def create_random_operand(op: Operand) -> Union[int, R8, R16]:
value = randint(-128, 127)
return value
def create_random_program(size: int) -> Program:
insns = []
for _ in range(size):
cls = choice(ALL_INSN_CLASSES + [UNUSED])
insns.append(create_random_insn(cls))
return Program(insns=insns)

Loading…
Cancel
Save