Browse Source

Break up synthesis and optimization

master
Forest Belton 3 years ago
parent
commit
e655d6c0fc
2 changed files with 92 additions and 29 deletions
  1. +6
    -8
      ex.py
  2. +86
    -21
      gbso/optimize.py

+ 6
- 8
ex.py View File

@ -6,7 +6,7 @@ from gbso.program.test_case import TestCase
from gbso.cpu.insn import *
from gbso.cpu.regs import R8
from gbso.optimize import cost, optimize
from gbso.optimize import OptimizationParameters, cost, optimize
from gbso.program.program import Program
prgm = Program(
@ -20,8 +20,8 @@ prgm = Program(
outputs = [R8.A]
test_cases = [TestCase()]
max_size = 4
num_iters = 1_000_000
params = OptimizationParameters(max_size=4)
initial_cost = cost(prgm, test_cases, outputs, prgm)
initial_cycles = prgm.perf()
@ -36,11 +36,9 @@ start_time = time()
optimized_prgm = optimize(
prgm,
init_prgm=create_random_program(max_size),
max_size=max_size,
test_cases=test_cases,
outputs=outputs,
num_iters=num_iters,
test_cases,
outputs,
params,
)
end_time = time()

+ 86
- 21
gbso/optimize.py View File

@ -1,14 +1,18 @@
from dataclasses import dataclass, replace
from math import log
from random import random
from typing import List, Optional, Tuple
from typing import Callable, List, Optional, Tuple
from gbso.program.test_case import Output, TestCase, eq_on_testcase
from gbso.program.mutate import mutate_program
from gbso.program.mutate import create_random_program, mutate_program
from gbso.program.program import Program
EPSILON = 0.00001
DEFAULT_NUM_ITERS = 1_000_000
DEFAULT_ANNEALING_CONSTANT = 0.5
DEFAULT_SYNTHESIS_ITERS = 0
DEFAULT_OPTIMIZE_ITERS = 5_000_000
DEFAULT_NUM_CANDIDATES = 1
DEFAULT_PROB_OPCODE = 0.25
DEFAULT_PROB_OPERAND = 0.25
@ -18,7 +22,9 @@ DEFAULT_PROB_INSN = 0.25
DEFAULT_PROB_INSN_UNUSED = 0.1
def cost(orig_prgm, test_cases, outputs, prgm) -> Tuple[int, bool]:
def cost(
orig_prgm: Program, test_cases: List[TestCase], outputs: List[Output], prgm: Program
) -> Tuple[float, bool]:
# Since each instruction executes in 4*k cycles (for some k), this can have
# the undesirable effect of performance improvements being weighted much
# higher than correctness. This hurts convergence pretty badly, so we scale
@ -32,35 +38,63 @@ def cost(orig_prgm, test_cases, outputs, prgm) -> Tuple[int, bool]:
return perf + eq, eq == 0
def optimize(
def cost_noperf(
orig_prgm: Program, test_cases: List[TestCase], outputs: List[Output], prgm: Program
) -> Tuple[float, bool]:
eq = 0
for test_case in test_cases:
eq += eq_on_testcase(orig_prgm, prgm, test_case, outputs)
return eq, eq == 0
@dataclass
class OptimizationParameters:
max_size: int
beta: float = DEFAULT_ANNEALING_CONSTANT
synthesis_iters: int = DEFAULT_SYNTHESIS_ITERS
optimize_iters: int = DEFAULT_OPTIMIZE_ITERS
num_candidates: int = DEFAULT_NUM_CANDIDATES
prob_opcode: float = DEFAULT_PROB_OPCODE
prob_operand: float = DEFAULT_PROB_OPERAND
prob_swap: float = DEFAULT_PROB_SWAP
prob_insn: float = DEFAULT_PROB_INSN
prob_insn_unused: float = DEFAULT_PROB_INSN_UNUSED
cost_fn: Callable[
[Program, List[TestCase], List[Output], Program], Tuple[float, bool]
] = cost
# Perform one round of optimization
def _optimize(
target_prgm: Program,
max_size: int,
test_cases: List[TestCase],
outputs: List[Output],
beta: int = 0.5, # How far away in cost you are allowed to search
params: OptimizationParameters,
num_iters: int = DEFAULT_OPTIMIZE_ITERS,
init_prgm: Optional[Program] = None,
num_iters: int = DEFAULT_NUM_ITERS,
prob_opcode: float = DEFAULT_PROB_OPCODE,
prob_operand: float = DEFAULT_PROB_OPERAND,
prob_swap: float = DEFAULT_PROB_SWAP,
prob_insn: float = DEFAULT_PROB_INSN,
prob_insn_unused: float = DEFAULT_PROB_INSN_UNUSED,
) -> Program:
padded_prgm = (init_prgm or target_prgm).pad(max_size)
padded_prgm = target_prgm.pad(params.max_size)
if init_prgm is not None:
padded_prgm = init_prgm.pad(params.max_size)
last_prgm = padded_prgm
last_cost, _last_eq = cost(target_prgm, test_cases, outputs, last_prgm)
last_cost, _last_eq = params.cost_fn(target_prgm, test_cases, outputs, last_prgm)
best_prgm = target_prgm.pad(max_size)
best_cost = 0
best_prgm = target_prgm.pad(params.max_size)
best_cost = 0.0
num_candidates = 0
for _ in range(num_iters):
candidate_prgm = mutate_program(
last_prgm, prob_opcode, prob_operand, prob_swap, prob_insn, prob_insn_unused
last_prgm,
params.prob_opcode,
params.prob_operand,
params.prob_swap,
params.prob_insn,
params.prob_insn_unused,
)
candidate_cost, candidate_eq = cost(
candidate_cost, candidate_eq = params.cost_fn(
target_prgm, test_cases, outputs, candidate_prgm
)
@ -69,9 +103,40 @@ def optimize(
best_cost = candidate_cost
num_candidates += 1
if candidate_cost < last_cost - log(random()) / beta:
if candidate_cost < last_cost - log(random()) / params.beta:
last_prgm = candidate_prgm
last_cost = candidate_cost
print(f"Optimization complete. Total candidates: {num_candidates}")
return best_prgm
def optimize(
target_prgm: Program,
test_cases: List[TestCase],
outputs: List[Output],
params: OptimizationParameters,
) -> Program:
print("Synthesizing candidates...")
candidates = [
_optimize(
target_prgm,
test_cases,
outputs,
replace(params, cost_fn=cost_noperf),
num_iters=params.synthesis_iters,
init_prgm=create_random_program(params.max_size),
)
for _ in range(params.num_candidates)
]
best_candidate = min(
candidates, key=lambda p: cost(target_prgm, test_cases, outputs, p)[0]
)
print("Optimizing...")
return _optimize(
target_prgm,
test_cases,
outputs,
params,
num_iters=params.optimize_iters,
init_prgm=best_candidate,
)

Loading…
Cancel
Save